Sorghum – a crop with various agronomic possibilities

AgriSem GmbH

Energy from the power of the sun

Dr. Friedrich Jäger, Dr. Sarah C. Lange

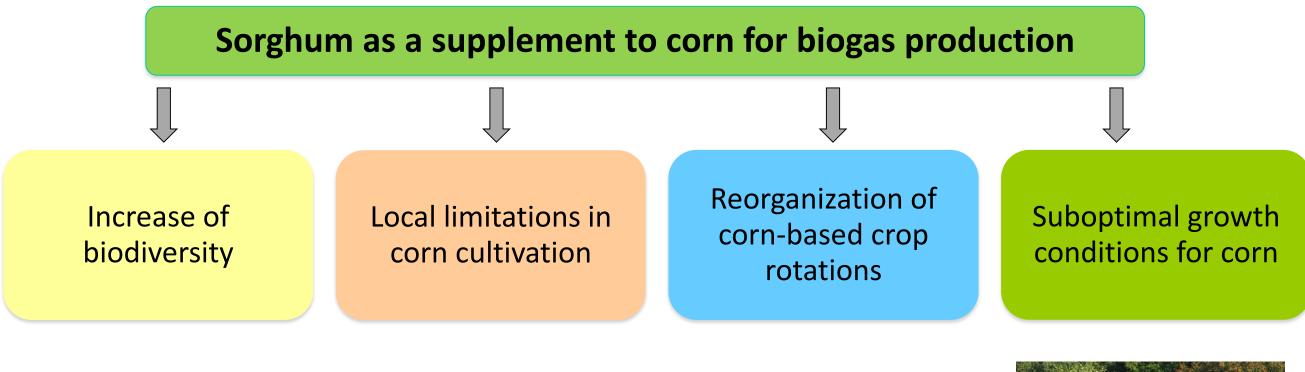
Kontakt: agrisem@energiepflanzen.net

Introduction

Sorghum belongs to the family of the true grasses and is the basic food ressource for many humans especially in arid climate zones. Through years of selection, genotypes have been generated that are well adapted to extreme conditions.

Experiences in Sorghum cultivation under our temperate climate show that Sorghum can act as the perfect supplement to corn, e.g. for biogas production (→ Sorghum cultivation for biogas production). Sorghum cultivation increases the biodiversity of energy crops. Since Sorghum belongs to the C4-plants, it has an improved photosynthesis activity and a remarkable water and nutrient efficiency. Its resistance to many corn pests and diseases maintains a positive influence particularly in corn based crop rotations.

S. Sudanense, S. bicolor, Z. mays


Sorghum bicolor and crossings of S. sudanense x S. bicolor are used not only in scientific projects but also for practical use. Many different food products are processed out of the Sorghum grains, but furthermore the whole plant can generally be used as feed (\rightarrow Sorghum cultivation for fodder silage production). In addition, Sorghum cultivation for grain production can be successfull in favorable regions (\rightarrow Sorghum cultivation for grain production).

In 2012 a milestone was reached when the Federal Plant Variety Office in Germany established a variety list for Sorghum. A grain-based *S. bicolor* hybrid is also tested in the nationwide experiences for its cultivation ability.

Sorghum cultivation for biogas production

Characteristics of biomass-based Sorghum varieties➢ bias to lodging

Sorghum cultivation for fodder silage production

Sorghum can easily be harvested with the forage harvester
a DM-content of min. 26 % at harvest reduces soakage
grain-based hybrids can achieve a grain content of 50%

Ingredients of grain-based Sorghum and corn silage in g/kg DM grown in 2012 (Blgg 2012) (4)

ingredients	GK-Emese	Sweet Susana	corn silage
DM %	31.4	37.3	32-38
ash	45	38	35-45
protein	95	93	70-90
fibre	193	174	170-190
starch	345.4	360	> 300

- Iow dry matter content at harvest
- > growth is predominantly vegetative
- high contents of lignin
- Iow energy concentration and gas yield

Influence of different Sorghum varieties (CV) referring to protein content (XP), ADF, NDF, ADL, ash (XA) and	
the specific gas yield in batch trials at Groß Gerau (Athar, M., 2012) (2)	

sorghum variety	CV	XP % DM	XZ % DM	ADF % DM	NDF % DM	ADL % DM	XA % DM	gas N/kg DM	methan N/kg DM
silage based	Rona-1	7.50	10.70	28.40	50.3	3.10	6.20	721	387
biomass based	Goliath	6.30	11.20	38.7	58.0	5.30	7.90	519	280
Sudan gras	Akklimat	8.00	6.00	36.4	59.6	5.50	8.10	415	232

Characteristics of corn-based Sorghum varieties

- resistance to lodging good stability
- > grain is the main part of the yield
- ideal DM-content even of green stover
- biogas and methane production is equal to corn

Comparison of grain-based and biomass-based Sorghum varieties (TFZ Straubing, 2012) (3)

	lodging	DM-content		DM-yield		theor. methane yield/ha*	
grain-based	rating 1-9	%	rel.	dt/ha	rel.	in m ³ 330 nL/kg o TS	
Sweet Susana	1.0	28.7	123	214.1	171	7064	
Sweet Caroline	1.0	26.7	114	194.2	155	6409	
Alföldi	1.0	30.4	130	193.1	154	6374	
Emese	1.0	29.6	126	181.9	145	6002	

biomass-based sorghum varieties tend to lodge. Yield (ha) as well as energy content comparable to corn silage was not achievd (LfL 2009-2010) (5)

Sorghum cultivation for grain production

- ingredient composition is optimal for fodder production
- gluten- and tanninfree varieties are beneficial for human diet

Ingredients of different cereals (g/kg DM)

cereal	protein	fat	fibre	NfE	starch
wheat	138	20	29	794	675
barley	125	27	27	764	600
oat	123	52	113	679	447
corn	106	46	26	805	646
GK-Emese	128	33	27	790	659

- grain yield of 8.11–11.03 t/ha was harvested in field trials at five places and years at 86 % DM-content
- \succ reduction of tillers with a delay in maturation because of sorghums' tolerance to a

* benchmark from analyse		27.5	TOO	292.3	TTT	JJ40
2001200	1.9	27.5	100	292.5	121	5548
biomass-based						230 nL/kg o TS
average	1.1	27.1	115.8	172.6	137.8	5696
50	2.0	23.4	100	125.2	100	4132
DSM B7B-2C7	1.0	21.7	93	127.3	102	4201
Express	1.0	28.0	120	164.2	131	5417
Stamm-1	1.0	28.4	121	180.9	144	5970

the biomass-yield of grain-rich Sorghum varieties does not reach the level of biomass-based varieties but their methane production capability is much higher!

high population density (> 30 plant/m²)

Quality- and yield parameters of *Sorghum bicolor* hybrids at side Bingen 2012 (6)

variety	Besatz %	Hight cm	panicle/m ²	plant/m ²	panicle/plant
Fuego	5,8	119,8	36,3	34.3	1.1
ASM 7-018	5.4	104.2	27.3	33.3	0.8
Leggoo	18.4	113.1	36.0	31.8	1.1
Iggloo	9.6	113.8	38.7	25.5	1.5
Balto	5.7	98.0	47.7	24.8	1.9
SC 25-05-5	6.5	131.4	34.0	22.0	1.5

References

- Gaudchau, M., Institut für Pflanzenbau und Pflanzenzüchtung, Justus Liebig Universität Gießen 2013
- Athar, M., Performance of Sorghum (*Sorghum bicolor* L. Moench) as an Energy Crop for Biogas Production, Justus Liebig Universität Gießen, 2011
- 3. Technologie- und Förderzentrum, TFZ, Straubing
- ^{4.} Blgg Deutschland GmbH, Parchim
- 5. Ettle, T. et al., Ertragsleistung und Verdaulichkeit von Hirsesorten zur Fütterung, Landesanstalt für Landwirtschaft, 2013
- ^{6.} Petersen, J., Körnersorghum als Alternative zu Körnermais, MAIS 03/2013

Outlook

- > Breeding of varieties with cold tolerance, early maturation, resistances
- > Establishment of a test system to detect the utilization specific characteristics
- Optimization of cultivation techniques: plant protection, fertilization management, crop rotation